See also: Jozef Stefan Institute, Saso Dzeroski International seminar on:Analysis of Environmental Data with Machine Learning Methods
-------------------------------------------------------------------------
You are cordially invited to attend the international seminar on
ANALYSIS OF ENVIRONMENTAL DATA WITH MACHINE LEARNING METHODS
11.-14. December 2000, Ljubljana, Slovenia
Organized by Jozef Stefan Institute, Ljubljana,
in cooperation with University of Ljubljana and Nova Gorica Polytechnic
The seminar will give an introduction to selected machine learning methods
as well as illustrative case studies of using these methods to analyse
environmental data, such as modeling algal growth in lakes and lagoons,
analysing the influence of physical and chemical parameters on selected
bioindicator organisms, and predicting the biodegradability of chemical
compounds. The participants will learn to use selected machine learning
tools and will have the opportunity for practical work with these tools on
real environmental data. The machine learning methods and tools introduced are
applicable to data analysis problems from different areas.
The seminar is intended for researchers and other professionals in the areas
of biology, chemistry, environmental science, and other areas related to
ecology and environmental management, whose work requires the analysis of
environmental data or modeling ecological processes.
Contents
* Introduction to machine learning
o Association rules
o Bayesian classification
o Clustering
o Data mining and knowledge discovery
o Inductive logic programming
o Instance-based learning (nearest neighbor classification)
o Learning decision (classification) and regression trees
o Learning classification rules
o Machine discovery of equations
o Neural networks
* An overview of environmental applications of machine learning
o Analysis of the influence of environmental factors on respiratory diseases
o Analysis of the influence of soil habitat features on the abundance of Collembola
o Modeling phytoplankton growth
o Modeling interactions among red deer population, meteorological
parameters and new forest growth
* Case studies of using machine learning to analyse ecological data
o Analysis of water quality data (Slovenian and English rivers)
o Modeling algal growth in the Lagoon of Venice
o Predicting biodegradability of chemical compounds
o Runoff prediction from rainfall and past runoff
* Demonstrations/practical work with machine learning software packages
on real ecological data and individual consultations with lecturers
------------------------------------------------------------------------- |